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“E::%E? L) Initially we considers'ﬁhejstandard isonormal linear process L on a -
' Hilbert space H, and applying metric entropy methods obtain bounds for :hér""“
i?:sgé‘ probabi]ity::ﬁ; supclx > A, € < Hand ) 13";9 Under the assumption that

s§§§§3§ ) the entropy function pf C growipolynomiaﬂy, we find bounds of the form

K c)\ae‘%m/oz’ whereﬁfﬁ-t;}sgfr:e’inaximal variance of L. We use a notion of entropy

finer than that usually employed, and specifically suited to the non-stationary

situation. As a result we obtian, in the non-stationary setting, more precise

bounds than any in the literature.
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We then treat a number of examples in which the power& is identified.
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g 1. INTRODUCTION

- We start with some motivation from the theory of empirical processes,

5y

%? letting X],...,Xn be i.i.d. observations from some k-dimensional distribution,
)

LI

f§¢ and assuming we want to test the hypothesis that the parent distribution is

given by a measure v: v(A) = P{Xi € A} on the unit cube. A natural test pro-

i;.'»‘, v n

9 cedure is to form the empirical measure v : v (A) = Z . Ia(Xg) (1, is the

i n’ i= i

!3 indicator function of A) and compare Vn to v via a Ko]mogorov-Smirnov type

statistic of the form

K (1.1) sxp {/n v (R) - v(A)]}

for some family A of Borel subsets of [0,1]k. It is known (Dudley 1978, 1984)

}% that /ﬁ(vn-v) converges weakly to a Gaussian process on A, under conditions
§} related to the size of A. Consequently, thz study of (1.1) reduces, in the
s{ 1imit, to the study of the supremum of 2 particular Gaussian process over a
ﬁg . class of sets.

ﬁﬁ Unlike the case for their Markov counterparts, however, it is well known

that for Gaussian processes it borders on the impossible to obtain the exact

?x' distribution of their (global) maxima. For stationary Gaussian processes on
%g the line, for example, there are only six covariance functions for which the
3{ precise distribution of the maxima of the corresponding processes are known
] (c.f. Slepian (1961), Slepian and Shepp (1976), Cressie and Davis (1981),

é% Darling (1983)). For random fields on RK the situation is even worse, for there
a‘ exists no non-trivial Gaussian field, either stationary or not, for which the
?} precise distribution of the maxima is known. In certain specific cases,

55 however, upper and lower bounds to this distribution are known.

{2 Goodman (1976), for example, calculated good bounds for the cases of the
g? pinned and regular Brownian sheets in K. (See Section 4 for definitions).
b
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These have been improved and extended to higher dimensions in Cabafia and
Wschebor (1982), Cabafia (1984) and Adler and Brown (1986). A1l but the last

reference deal only with sheets arising from the case v = Lebesgue measure

in (1.1). The only other Gaussian field for which some (not wholly satisfac-
tory) bounds are known is a two-parameter generalisation of Slepian's
triangular covariance function (Cabafia and Wschebor (1981), Adler (1984)).

Needless to say, in more general situations, such as those arising from
(1.1) when the parameter space may be a class of sets, virtually nothing is
known on the exact distribution of the supremum.

Partly, or perhaps primarily, because of this dirth of results a large
amount of effort has been expended in studying the asymptotic properties of
Gaussian maxima. The most central, and most well known result in this direction
is due to four authors, Fernique (1970, 1975), Landau and Shepp (1971) and
Marcus and Shepp (1971), who proved various versions of the result that for
any zero mean sample path continuous Gaussian process X(t), t ¢ S, and S a

metric space,

(1.2) Tim 2n P{sup(X(t), t € S) > A}_ _ (202)
Ao A2
where

2

o sup E{Xz(t)}.

te$S

An immediate consequence of (1.2) is that for all Ao >0, and any € > 0,

there exists a constant K=K(e,A0) such that if A > Ao then

2 2
(1.3) P{sup X(t) > A} < K e} e7#M0
teS

(An even sharper result than this is due to Borell (1975). See comment 3 of

Section 6.)
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Our aim in this paper will be to perform a simple epsilonectomy - i.e. to
remove the factor exp(er2?) from (1.3). In general this cannot be done without
paying some price, and in the cases we shall consider the price will be to
replace this exponential factor by a smaller power factor of the form A%,

o > -1, so as to obtain bounds of the form

(1.4) Pisup X(t) > A} < K% /9%

teS
for large enough A.
Results like (1.4) are not new. They were obtained originally by
Pickands (1969a,b) for the class of zero mean, stationary Gaussian processes on

[0,1] whose covariance function R(t) = E{X(s)X(s+t)} satisfies
(1.5) ~ R(t) =1 - cit|®+ o(|t]™ as |t] » 0,

where a ¢ (0,2] and ¢ > 0 are constants. Pickands showed that for each fixed

h > 0 for which sup R(t) = 8. < 1 forall e >0

efﬁih

(1.6) Yim 1 P{sup X, > A} = hc'/% | »

oo 2T 7y Octeh

where Ha > 0 is a finite constant depending only on o and p is a standard

normal density function. (Except for the cases a = 1, o = 2, the value of Ha

is not known.) This result has been extended to certain stationary random

fields by Belyaev and Piterbarg (1972) and, more recently, to certain non-homogeneous

processes on HI] by Piterbarg and Prisjagnjuk (1979). A proof of (1.6), along

with historical details, can be found in Leadbetter, Lindgren and Rootzen (1983).
More recently Weber (1978, 1980) has obtained a set of results which,

while they do not identify constants as in (1.6), provide bounds to the distribu-

tions of Gaussian suprema for the widest possible class of Gaussian processes,
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including the set-indexed processes described above. However, as we shall show
later, his bounds, when they are of the form of (1.4), do not always yield the
smallest possible value of o. We shall have more specific comments to make
about Weber's results later.

Before saying any more, it is probably worthwhile at this point to explain
to the sceptic what we gain from an epsilonectomy at (1.3) beyond the surgeon's
natural pleasure of neatly removing an unnecessary appendage or, indeed, from
sharpening the power in Weber's results. The first application is purely
theoretical. Consider a function valued Gaussian process, i.e. a process
Y(_), whose value at a given time is a Gaussian random process. Such processes
arise naturally in a number of ways, often by "relabelling", for example, a
two-parameter process X(s,t) to obtain a function valued Yt under the correspon-
dence Yt(s) = X(s,t). Such processes include the Kiefer process (Kiefer (1972))
of empirical process theory. Iterated logarithm type results for the growth of
sup Yt(s) with t have been studied in depth (see, for example, Goodman, Kuelbs
azd Zinn (1981)) and, to a heavy extent, are based on the inequality (1.3).
Finer results, such as upper-lower class theorems for sup Yt(s), are much harder
to obtain (Kuelbs, (1975) is one exception we are awaresof) as (1.3) does not
provide fine enough information. A result of the form (1.4) does, however,
fulfill this need, and is applied to this purpose to obtain upper-lower class
theorems for empirical processes in Adler and Brown (1986). Establishing (1.4)
in general, therefore, opens up the possibility of a general upper-iower class
theory for function valued processes.

For the second application we return to our opening paragraph and the
Kolmogorov-Smirnov type statistic (1.1). Although our results will bound the

(asymptotic in n) tail distribution of (1.1), they will not really do so

vl,g‘
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KRAN sharply enough to enable, say, the generation of critical levels for statistical

 $§‘ tests. This problem seems to be hard enough that for the foreseeable future

f§§¢ this will be done by simulation techniques. What a bound like (1.4) tells the

%ﬁ% ‘ simulator, however, is that the critical levels depend on three parameters,

§%§' . k,a, and 2. As will be shown in Section 4, o and o? can be obtained from our

§$§= general theory, so that only one parameter remains to be estimated, making the

ﬁ%ﬁ simulation task much simpler.

ﬁgﬁi The paper is organized as follows. In order to treat the most general

%ﬁ% processes possible, we shall work initially with the isonormal Gaussian process

fg&% on Hilbert space. This, together with requisite entropy notions, will be

%gg described in the following section, where we shall also develop a version of

§$$ﬂ Fernique's (1975) inequality, that will be the basis of all that follows. In

%t:: ' Section 3 we shall present a number of theorems that show that by putting more

%;;‘ , and more structure on the parameter Hilbert space (via entropy conditions)

%;; finer and finer bounds on the distribution of the maximum can be obtained.

1&'. Proofs are deferred to Section 5. Section 4 contains a number of examples, in

jéq which we apply the results on the isonormal process to specific problems. For

§§R example, we obtain sharp (in the sense of best possible power o) bounds for

%ﬂﬂ the maximum of a rectangle indexed Brownian sheet. In Section 6 we conclude

T, with some comments.

o

%Sﬁ . Acknowledgements. Some of the results presented here, when restricted to the |
< class of homogeneous Gaussian fields on IRk, have a significant overlap with §

i;;; the "extended Fernique inequality" in Berman (1985a). We had already obtained !

?gég these results independently before hearing, from Professor Berman, of this

= work. However, when he very kindly sent us a preliminary (still untyped)

%&% version of his results we took advantage of the opportunity to combine what was
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best in both proofs, and so the statements and proofs of Theorems 3.2 and 3.3,
when restricted to simple random fields, have much in common with his results.
As our examples show, however, even for simple fields, our later theorems go
beyond his in identifying the optimal power.

We are also grateful to Larry Brown, who did most of the hard wcvk in
Adler and Brown (1986). It was his insight on the problems tackled there that
set us off on the current work.

Both a referee, and Professor Weber himself, drew our attention to the
results of Weber (1978, 1980). We are grateful to Professor Weber for corres-
pondence helping to clarify the relationships between his work and an earlier

version of this paper.
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gg. 2. THE ISONORMAL PROCESS AND A FERNIQUE INEQUALITY

sﬁf The central idea is to study one, canonical, Gaussian process,

o and then relate any particular process to this one. It is defined as

§?i follows. Call a sequence {Xn} of random variables orthogaussian iff
§§. N they are independent with L(Xj) = N(0,1). Let H be a real, infinite-
;i dimensional Hilbert space. A linear map L from H 1into real Gaussian
gﬁ variables with EL(x) = 0 and EL(x)L(y) = (x,y) for all x,yeH is

‘éﬁ called the isonormal Gaussian process on H. (c.f. Segal (1954), Dudley (1967,
;f- 1973 ). For example, if {xn} is an orthonormal basis for H so that
;ﬁ for xeH, x = 1a x , we can let L(x) = zanYn, where the Y, are ortho-
E?; gaussian.

{ Since Gaussian distributions are uniquely determined by their

{é means and covariances, the isonormal process L can be regarded as the
laﬁ only real Gaussian process. For, if {xt, teT} is any real Gaussian

i process with mean Ex, = m,, then L(xt-mt) tom is another version of
& the process, where we take L2(q,P) for H. On H,L "remembers" the

f‘é covariance structure of Xps and, by its linearity, also keeps track

;é of all joint distributions. Thus, we can in general neglect the speci-
y{ fic joint distributions of Xy on (2,P) and work only with the

;:: abstract geometric structure of the function t»xt mteH To see pre-

:: cisely how this works in practice, see the examples in Section 4.

g& In order to study the structure of H, we shall require the notion
3@ ’ of metric entropy. Let C be a subset of a metric space (S,d). Given
ﬁq e>0, let N(C,e) = Nc(e) be the minimal number of points XysesesXy

Eﬁj from C such that for all yeC min d(x.,y) <e. We assume N finite
&J- for all e > 0. Consequently, thele exist sets Al""’ANC(e) covering
::; C such that for all n d(x,y) < 2¢ for all XsyeA . Set Hc(a) = 1ogNC(g).
w3
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Then Hc(e) is the metric entropy of C. Metric entropy is well known to play

an important role in continuity problems for Gaussian processes. For example,
1
L, restricted to C < H, is sample continuous if fg Hé(x) dx < =, Metric

entropy can also be used to study suprema problems. For example, Weber (1980)

has shown that if ||{x|| = 1 for all x ¢ C, and certain other side conditions hold,
then
(2.1) P{sup |Lx| > x + Hx} < const. N(C,v(x))¥(x),
XeC .
where

¥(A) = P{|Lx| > A} = VO/T J e gy,
)

pV()\) 1
I, = p(o-1) fo [H(C,e) - log 1™% de,

<<
—
>
S
]

inf {0 < e < €g° h(e) < A},

e'] [H(C,e) - log e]%,

=

—
™

~—
1}

gg = inf {0 < e < 1: N(C,e) < 2}

and p ¢ (0,1) is arbitrary. Assuming I, is small enough for large A (as is
usually the case), that v is at most polynomial, and that the entropy is
polynomial, we see that (2.1) is a result of the form of (1.4), which is what
we are seeking.

There are, however, two difficulties with Weber's result, insofar as
general best upper bounds are concerned, and, in particular in relation to the
examples from the theory of empirical processes that motivated us. The first

is the assumption that ||x|| = 1 for all x. It is possible to get around this

in the general case by noting




Ve
k', 20 iﬁ

(2.2) P{sup Lx > A} < P{sup Ly > .J

xeC yeC'
where o = sup ||x|], and C' = {y: y = x/||x]||, x ¢ C}. It is not hard to see
that the entropy function for C' follows the same general behaviour of that for
C, and since ||y|| =1 for y ¢ C' Weber's result then gives a bound for (2.2).
However, it is easy to check via examples such as Example 4.1 that this procedure
does not give the sharpest bounds possible.

The second difficulty to somewhat more fundamental, and essentially
insurmountable, even if Weber's results did not assume ||x|| = 1. It lies in
the fact that a methodology based purely on metric entropy can never always give
the uvest bounds. To see this, one example will suffice. In Section 4 we show
how to calculate supremum distributions for general processes by assigning to
each process a particular Hilbert space, and then studying L on that space. It
is easy to see that the Wiener process, W(t), t ¢ [0,2] and the stationary
Slepian process St = wt+] - wt, t ¢« [0,1] generate identical (up to a constant)

entropy functions since

E (W, - W 3=t -s] =% (s, -5 |5, 0<s,ten.

Thus any bound for the suprema distributions of W and S on [0,1] coming from
metric entropy considerations involving only H must be the same. But it is

2
well known that whereas P{sup > A} = O(A']e'%A ), we have
[0,1]
142
P{ sup S, > A} = 0(e™).

[0,11°

In general, then, the problem is that different processes may have essentially

We

tne same metric entropy, but quite different suprema distributions.

In order to solve this problem we shall require finer partitions on C
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K 10

than those obtainable just from entropy considerations. To this end,

q&i for given & > 0 set

(2.1) Co = (xeCellx]| > 63, C3 = (xeCiflx|| < 61,

e e
A
ST

W

SRF

}ﬁﬁ: where CC H and |[|.| is the H-induced norm. Now define
EAN)
e , , ] ]
! (2.2) N.F(sae):= N(C.Foe), N.T(60e)0 = N(C,he).
i C 8 o s
gﬂ%
R . .
g:? Since € =C, UC, » it is obvious that NC(e) < Ne (8,€) + N (85¢)
® f for all & and ¢. We shall need one more entropy function,
B
¥ Lo + _
o (2.3) No(8qs8p08) 1= N(C, N C; 4e)y 0 <8y < 6,0 € > 0. |
ot 1 2
: )
e
:5¢7 The motivation behind this last entropy function should be clear.
)
) The idea is to first break up C 1into regions over which L(x) has
I XY
TR . s .
a%;g a variance (=|x|P) within certain bounds, and then to measure the

A
0 “size" of each of these regions via entropy considerations. This will
Tt _

provide the finer information we shall need (particularly for non-
l
:2 n homogeneous processes for which ||x|| is not constant over H) to obtain
s
: E& sharp bounds for the distribution of supL(x). 1
ql.
— We can now commence setting up the basic (Fernique type) )
hed
¢:J inequality from which all our other results will ultimately follow.
>l
o To this end, set
- o =sup |Ix}].
g xeC
8y
o
DT
‘%3 . A L1 P ™ . a _fc T W'q-x;" o \N‘ ' 5)”.*\}-'-*»)*-** *.*"‘-‘. yv-’r¢.p ‘-’..—“- r..:. \"q""\'\f.'j
Ay ‘\ LSS\ (‘n ’; 'Q-N- 4...,’* _.“_J" (! _.\d. ACERL CALACHA A Ay WL SRS .i.‘ ‘.xﬂ'; AR

»‘"':‘.v'-*":"g«::"-t‘-'f e é‘:;‘»ﬁ*:':‘\‘w.l 3 &’!q'l"r-‘&'u."s:‘."\: %, 2 s W ."Ja‘-i.v‘n“r' WD :v‘r'}‘!\:’l. X ) m'v!’ .' I :"“l . .:O v, < *}""ﬁ‘” 2 ;.
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Let 61 be a sequence satisfying 0 = 50 < 61 < L., < dm =g,

with m possibly infinite. For each i=1,...,m 1let €55 J=1,2,...,
be an infinite monotone sequence such that 11m e1J = 0. We shall use
@; ) these two sequences to partition C as the 3:?on of CG%_],di), where

Clvan) + =€ "€ 7 = (xeCi v <[[x[|<nb 0 v <n <o

fh, Note that for every j there is a finite collection of points of
&

{5 C(8,_158;)» which we shall denote by Cij’ satisfying

. =
’.‘: ) (2.4) #C_ij NC((S_i--',G_igeij) ]

- (2.5) for a1l yeC(s;_y,6;) there exists an XeC;; such that

% Ix-y[| < €45

(Here #A is the cardinality of A.)

;ﬁ We shall need one more double sequence Aij’ i=l,...,my, J=0,1,2,...,
‘l |
0
%{ of positive numbers. Clearly
R

,,,,.v
'
&
o™

" (2.6) P{sup|Lx| > MoSit <N (6 12850551 19(%44) 5

¢ xeC.;

. il

:gf where

:'l' o ';ﬁxz

- (2.7) w(u) = 277 [ e ¥ dx .

Y u

§§

)

\ . .

&} Furthermore, for each XeC(Gi_],Gi) there is a point xij(x)ecij such

N that ||x-xij||< ejj + Consequently

I’_..

‘;.:

Ly

'

:i;ﬁ

5'; - o \E !.!,.'('
¢ SRS Ol T o S .J(.,_w TN .'Cn,.\_-.‘h“f- ARG AL ’\.\ TN "VV\J& ' ‘ﬂ R \
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. P{ sup |Lx - Lx; (x)[ > A €45 5_Nc(si_],si.ei’j+])w(xij),

A . XeC 41

&;a ’J

A

'2: from which follows that

W J

?g (2.8) P{igg |Lx| > AiOGi + kz]A KE k}

RN 1,J+1 '
;_Q'.

Yo j

ﬁ: = kZONC(61 ]:6 381 k+])w()\ k) .

3

i: Now note that, as j » =, cij becomes dense in C(Gi-1’51)° Consequently,

. choosing a separable version of L we obtain from (2.8) that ,
i

:' o0 oo

[ !

[ P{sup ILx] > A8, + I Ajecib < T N(6, 285 0€; e (a, ).
kR C(5;_16,) 1071 7 IS = 52 iR

i

2

0 It is now trivial to check the truth of the following inequality, which

Y

forms the basis of the remainder of the paper. )

Basic Inequality For sequences 61’ Aij and €3 satisfying
W

! = = ; s pa s
%: 0 8y < 8y < .en < §, =0 (m possibly infinite) and €15 “ 0
§ as J -« for all i, separable versions of L satisfy
[h
5; (2.9) P{sup |Lx| > ? Ainds * ? ; Asi€s sl
‘I .
2 XeC g1 10017 45y g i
W
t‘! m -]
<t TN(s TFFLE )w( ) .

R i=1 j= 0 i-1 i,J+]
i
f,l;v
$f Note that this basic estimate is extremely general, and not parti-
A

cularly informative. Our task now will be to propose meaningful, checkable
f' conditions on Nc(v,n,e), and, by judicious choices of the various
:; sequences in the basic inequality, reduce the various sums in (2.9) to
!
- simple, useful, forms.

\ 1
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3. MAIN RESULTS

-~

-
e

There are basically two types of possible growth rates for entropy

S

ﬂ{ functions that yield interesting results on sup Lx, polynomial growth

%’ | of the form Nc(e) n ac < , or exponential growth of the form NC(e) ~ a exple ™).
;3 Faster than exponential growth rates yield discontinuous, unbounded pro-

“ﬁ; cesses for which no non-trivial bound on the distribution of sup L can

ﬁﬁ exist, and slower than power rates are generally just not interesting.

ot In this paper we shall study only polynomial entropies, and shall show

é& how to relate the « above to the o« of (1.4). For some remarks on

3% exponential entropies, see Section 6.

gf Polynomial entropies, while initially seemingly restrictive, cover

3: a wide range of examples, including random fields indexed by finite

?; ' dimensional Euclidean space and processes indexed by spaces of sets,

o such as polygons, that are describable by a finite number of parameters.

3‘ Processes indexed by Vapnik-Cervonenkis classes of sets or functions

gé (c.f. Section 6) are also described by polynomial entropies. (c.f., for

ii. example, Dudley (1973, 78, 84).)

g& For the first result, we shall assume only minimal information on

§§ C, which also turns out to be all that is required if L 1is stationary

o on C (implied by |[x|| = const. for all xeC and (x,y)=f(x-y) for all

ég . X,yeC and some positive definite f). To be more precise, we assume

ﬁﬁ there exist positive constants a and « such that

ne

‘?:5 (3.1) Nele) = -

‘ . C €) = NC(O,o,e) < ae

)

N

§& for small enough ¢ . Then it is easy to show via the basic inequality

§§ (2.9) (c.f. Section 5) that for large enough p > 2 and all x > (1+4.<2np);5

o e " ) R R
B e AR R et et e
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(3.2) P{sup |Lx]| > Ar(o+2p 2)} g_g-apZK[ e 2 du .
A

xeC
To the reader acquainted with Fernique (1975) this inequality should
appear familiar, for he has a similar inequality for processes on
Euclidean space. It is in fact a simple matter to derive Fernique's
inequality from (3.2).
Via (3.2)it is not hard to prove the following result, closely related -

to Théordme 2.1 of Weber (1980) in the case ||x|| = o =1 for all x.
Theorem 3.1 Suppose N.(e) < ae ¢ for all ee(0,e5]. Define the

following constants.

max(eo"”“,z,zm) 0 <« <4,
b = b(K,eo) =
max(eo'%,2,1 + 2% tn k) «x > 4,
My = %‘(o%), My = %a(o+ss)exp{(2o + %) /%), ]

Then, for all A > 2b(o + %)2,

(3.3) P{sup |Lx| > A} <M 2’<-'Ie->\2/202

. exp{2(c+A-2)/o“}
xeC

.l)\

-1 =22/252
j_MZAZK ]e A\2/20%

Two things should be noted about this result. The first is that
since the assumptions assume nothing about the variation of |[|x|| on C,
(3.3) is unlikely to lead to sharp bounds for non-homogeneous processes.
In fact, it doesn't. Secondly, the constants in (3.3), while a little

unwieldy, are identifiable. As we assume finer structure on C, while

we shall get smaller powers for the power of A in (3.3), we shall lose

track of the constants. (In principle, we could always keep track of the

N

A\ . - . - - . - . Sy
AR A RS RERETEN S g A O T T o i e L T e L e e L Ty e ol y MRSERRN T

'§ LM AN a#“ :"':‘ ) S 1 0 "A e, ! ‘:‘:\:{{' AT AT \}\5“'\"‘"?1 e e e e «k vt "J.."}" N

D N N S L I O ,M‘tb‘h\.h R AR ARG R A NI T okt O O
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constants, but one reaches a point where they become so complicated that

it no longer seems worthwhile to expend the not inconsiderableeffort
required to do so.)

Our virst step away from homogeneity will be to divide C into
two regions, in one of which [|x|| is close to its maximum o, and to
concentrate on the separate entropies of these regions. In particular,
from experience with Gaussian processes on R] (e.g., Berman (1985b))
we should expect that the distribution of P{sup|Lx| > A} for large
should be determined primarily by the entropy CNC(G,c,e) as §.4 o.
This idea leads to the following result, in which, in most applications,

we shall choose an f such that f(8)¥0 as § A o.

Theorem 3.2 Llet f:(0,0) - R be such that

there exist positive constants a, « and g Such that for all

€ €(09€0]a 66(0’0)!

(3-4) Nc(oa‘sse) _<_a€—‘( s NC(G’OQEf(G)) iaE-K.

Then for each & and all A > A*(eO,G,o,K,f) we have

(3.5) P{sup |Lx| > A}
xeC
<2 a(o%) exp{-i——l" A n o246 (s) + 172 4 L550) 1y ¥/20°
<7l 0Zx e (5) 4 [ 4 Ho-5)1T
where M= g-a(o+%9exp{gigfllq and A* is the smallest A satisfying
g

the following three conditions:

(3.6) 2> [min(ney) - (8™,

PSR

n;".’o 'c. sty
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(3.7) A 2 max(2ey D). F7Ks),

,'e‘,:: 2(0 + %)2(2¢+1) 0 <k <4,
it (3.8) >
i 2(c + %)2(142/k2nx) <

A\
»

Note how the conditions on the constants are becoming unwieldy.

h' To see how this result works, let us prove a simple corollary.

\ The idea of the corollary is to introduce a parameter of "non-homogeneity",
- a, for C that describes the sizes of subsets of C over which | x|
%35 is close to its overall supremum o. Homogeneity is described by

X a = 0, with increasing o describing increasing non-homogeneity. The result is

Corollary 3.1 Under the conditions of Theorem 3.2, if f satisfies

(3.9) f(8) < c(o-6)*

G
’szx- for some positive o« and ¢ then for sufficiently large A

“." \ - -
P (3.10)  Psup|Lx| > A} < ma7! ¥ 2</(1%a) -32/202
xeC

%\‘ \ where

AL\ M=

alc + 2%)(o + %)exp 2(c+1)/c%} .

rojon

"W : (The interested reader can easily substitute into (3.6) - (3.8) to

make the statement "sufficiently large A" more precise.)

EAN RN -
o Proof. Set & =0 - A 2/(]+a), taking A large enough for § to be

,mﬁk& positive. It is then straightforward to check that (3.6) - (3.8) are

ggx satisfied for large enough » . Clearly, as X we have 6+0 . To

s -.'7.'&:.'&.‘\.!-"«. ) 'nx ‘Qa. J$

(T NPT+
- s ;\. $ \. -u*'z"'-r.x" “4 % "v.q
ﬁ’?“"“in“'l“l“““' ‘ ""AP.'\."“ \'!‘l .’4.~0 , . L

' ‘\ “i.l
,l!.!, ”5‘0!-
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prove the corollary consider the last term in (3.5)

)\ZKfK((S) + [)"2 'HE(O-G)]-K < CAZK)\-ZKa/(]+a) + (A-2+,/i>\-2/(]+a))-,<

i (C+2K)A ZK /(]"'a) ,

again for sufficiently large A . Substituting this into (3.5) establishes
the corollary.

Note, again, that large A sends &6 to o. That is, it is only
the neighborhood in C for which ||x|| is close to o that has any effect on
the distribution of sup|Lx|. To convince ourselves that the assumption
(3.9) has actually led to a sharper bound, we need only note that the
power of 1 1in (3.10) is never larger than that in (3.3), where no such
assumption was made.

Our next assumption on C will be that it possesses some sort
of scaling property, in the sense that there are subsets of C which
look much 1ike C itself, except that the original norm has been changed
by a scaling factor. The idea then is to partition C 1into a number
of smller pieces, study the supremum on each one of these via
Theorem 3.2, (to yield Theorem 3.3) and then piece the various bounds
together to bound the supremum over C itself, (Theorems 3.4, 3.5).

To this end, fix 6 > 0 and let Ge be a partition of C satisfying

(3.11) sup ||x-y]| < o for all A eG,

X oyeA
. G _ G .
Define N, (6): = #G,. Clearly Ne (6) > N.(e) , since the latter
entropy is related to an Ge of minimal cardinality. In general

however we shall want to choose Ge so that both entropies are
effectively the same. Now we introduce the "scaling hypothesis",

by assuming the existence of a function f and a constant a such that

-5 %% ANy ._i# W \w\f -f'.\,-‘.:_ ‘r_-(\_' :,gs".," ‘ T'*-‘_'. 'C\~:."..‘1:._{'.\w'. -\',f LSRR C {'

l
'\l 0 llq Q‘. ‘. .‘g

AT AT SR (_‘ o
.r_'.-(:.*__a". Sy ,‘.}" " *"$ sl

$‘$ "\"\;. X A
‘.hlt;“‘. '.,‘ .'« .‘o.t.' .hA .h!’lu’“ hY, .. " ! N, .\ .

"'r \\-\.'.
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‘;;5; (3.12) Np(f(6)e) < ae™  for all A ¢ G,
%;I and small enough €,6 > 0. Such an f always exists. (Take f = 1!) Clearly,
::‘ however, for this partitioning procedure to have any value, we shall want
§?E f(e) y 0 as 68 0. Nevertheless, it is not necessary to assume this at this
Eﬁ&: stage, and the bounds in Theorem 3.3 and its corollaries are correct for any f.
};‘ If f does not decrease to zero, however, they are uninteresting.
;f%% Note that it would be nice to replace (3.12) with the more pleasing
%?% condition NA(f(e)e) f_Nc(e) comparing entropies. However, such a condition
. turns out to be impractical in examples, since we generally do not have the
ag; precise form of Nc(e), but only its growth rate. !
\‘13 Note, also, that we can always take Ng(e) to be non-increasing, and,
{;! given some f satisfying (3.12), its left continuous monotone (non-decreasing)
é,i rearrangement also satisfies (3.12). Thus, in what follows, we shall always
233 take f left continuous. Consequently, fixing some p > 2, the function
. - 2
;: g(e) := 6 + 2f(6)/p ;
L0
;'1{ can also be taken to be left continuous, so that its inverse
24 g (n) := sup {6: g(8) < n}
A%
%‘$§ is well defined. We can now state the following result which is closely
::1 related to Théordme 2.1.1 of Weber (1978)in the case ||x|| = 1. Our style
§%§ of proof is completely different however.
;

g
ol

2 Theorem 3.3 Suppose N.(e) < ag™" for ee(0,e4], and that, for all

s -

: 0c(0,8], G, and f satisfy (3.12). Then for every p : max(2,cq™), {‘
Rl any AeG, ot = sxq|xu , and all x > g(e)(1+4xanp) ‘

ol (3.13) P( SL‘R [Lx] > 2) < xp([x g(e)(1+4K9,np)"1]/oA) 3

(3 + 4ap™y(1/g(6))

4§5' -1 =32/252

' + 4ap2KcAA T~ /ZGA‘ exp(1292(8)/20,*) .

c";g‘ ‘
ks . . v

(] .‘.“ O v 13 *i’- S 335,C c’\.\. (0.7 ’2(\‘ Ui .. I 'C " .“.‘.‘ J’

h:: k‘s't.. ‘ti: .. :: ':‘nl _a ,l. :!l“ ‘3 '5&" " 1"5:"::‘ ® z'\ "‘& '. Bl '.‘ ';lé l‘ s&' \::?:":"I:‘.\. \ ."' .0’ :“‘....u‘ :g. W !‘i (] ‘.‘ .‘



?%é There is an easy corollary to this theorem that is far more
9]
i illuminating. For large enough A, set
ok
' 3.14 = g  ([A2(1+4canp)]~"
’;EE: (3.14) 6, = 9 ([**(1+4canp)] )
Vil
XN
B and substitute into (3.13). Then apply the standard inequality
- 2
o v(u) < V27w u']e'%u , u >0, to obtain
3
bt o
%&2 Corollary 3.2 Under the conditions of Theorem 3.3 we have, for all
[ 1
A > max(1.1,{g(vZ) (1+4xenp) 47"), A c6,
i '
i =1 2132 2 -
:::‘::4 P{sup |Lx| > a} <A e Wa2/on? c,A 2exn{-%k“(]+4xlnp)},
l:"l. XcA
.‘_"'-
.’ where
RO, 2 -
ﬁﬁ' CI = 60Ae]/0 + 4ap2KoA 2exp{(20A“(1+4x£np)) ]}
REN)
R N
A Cz = 4ap?<(1+4cinp)
o
‘égﬁ (The constant 6 in C] comes from X > 1.1. In general, 6 can be replaced
i -2,-1
B by (1-27%)7)
qu An irritating aspect of both Theorem 3.3 and its corollary are
’\"'
g%. that the constants diverge as op * 0. The same phenomenon occurs in
i"
RN .
i Berman's (1985a) Theorem 3.1. In the following corollary, we show that
;i% this can easily be avoided via a simple trick, due, a referee tells us,
ﬁf to Lévy.
%ﬁ' ) Corollary 3.3 Both Theorem 3.3 and Corollary 3.2 hold if we replace
Tty
- 9 in the bounds by any o 2 0p 5 28 long as we then double the constants.
..;; The proof is easy, so we give it now. Note firstly that if Z,,
\)
¥
{ f; t T, is any collection of a.s. bounded, zero mean, Gaussian variables,

and Y an independent zero mean Gaussian variable, then

-

WX

NART 3P NP % A BT R TH RN R TR e LT e e Lt e e e L e, A R T R PP IR SN R T S I R P

g’ U )\ .'.'. N ;*\'.’idhl.* - 4‘4.\1.1_' -.‘._h-.i-')"._ «7 -_':-‘*\" O -_{- N, -‘"-l_“" L4 L 'P._ W5 . :
T N

0 )
* e i e
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12? (3.15) P(SUPIZtI > ) f_P(szp Z, > A) + P(izf Zt < =)
At
(S
o = 2P(sup Z_ > A, Y>Q) + 2P(inf Z_ < =, Y < 0)
LS t t - t t -
-'.-:'0
< < 2P(sup |Z, + Y| > A)
4‘. t t
b3,
3
"

To use this inequality, take o > 0y and Y zero mean Gaussian

%f with variance o2 - °2A » independent of Lx for all xeA, and
‘!
iﬁ define a new process L* by L*x =Lx + Y. Consider the image of
ks
b A under L*, call it A%, as part of an L2 space of Gaussian
72' variables, where for any two points, u,v in the imége such that
R
‘§}§ u= L*x, v =1L*, x,yeA their inner product (u,v), is given by
iy
2 E(L*x,L*y). Then clearl
(s ( y) y
28
ii" lulle = IIx]| + o2- GZAS Ju-dle = 1lx-yll -
3'3 Consequently, sup,,ful, = o> and A* has the same entropy
" function as A. let I be the identity map on this set. Then I is
b4 \"'
;%; clearly isonormal on A*, and supAJIul= supAL*xL Thus, we can apply
5y
*: Theorem 3.3 and Corollary 3.2 to I and then note (3.15) with Z =1L to
v prove the corollary.
b
'
302 Now let us pause for a moment to consider the import of Theorem
i
&, 3.3 and its corollaries. It is clear from Corollary 3.2 that for large
a0 21 2132 /mp2
e A, we find that the dominant term in the bound is 0(A ]e 32*/ o ). But
YN this is of the order of the probability that a single zero mean
YT
,Wf Gaussian variable with variance oAZ is greater than A, That is,
?:“ we have replaced the supremum of L over A by its value at one
)
}“: point only. Essentially, this has been done by making A small as i
158
t:{ becomes large, since AeGex and ex will be small for X 1large.
f‘? That is, we have achieved at this stage a discretization of the supremum
"'j
19!
t‘
B
S ]
EE}
*':'-% BRSO AL TRICOCE CoRaR RV AR I M O N RS
“.'-‘:’s.bx’.:'h,:'\,.‘zg'& .,':9 !’n!‘a,'_ AN ‘..,g. A.’l‘!“.&b.Q A.‘%‘??s‘,- ) \



N

-

Kk

Ry M rer

R

.

PO

P——
PR &

e WP
*

-“l"/‘"l"..

L \‘n "'\‘_'t ,‘- ,‘l': r

; » AN
,_’!‘ '.l‘l.‘._’.’,'. 'n.\

21
problem. This is actually the heart of the solution, for all we need

do now is sum the bounds of Theorem 3.3 and its corollaries over the
various sets in Ge to bound the supremum over the whole of C.

To sum these bounds efficiently, we require further assumptions
on the structure of C , as in the following two results, with which
we complete this section, and in which we finally give up trying to

keep track of constants. In the first result we shall, as in Theorem 3.2,

concern ourselves primarily with regions of C of large norm.

Theorem 3.4 Suppose Nc(e) < ae™® for ¢ e(O,sO], and that there

exist constants ¢ and B such that for each ee(O,eo] there

exists a partition Ge of € and constants ne,ao(e) so that

(3.16) n(s,6) 5_c(o-5)BNCG(e) +n,  for all se(0,55(e)].
where

(3.17) n(s,6): = #{AcG,: AnCé+ # o).

Then, there exist constants €y and <y such that for sufficiently

large A

-1- B -22/942
(3.18) P(sup |Lx| > a) 5_c]NCG(eA)A ! 28(znx) e /20
xeC

1 o2
+Ccan. A ]e A2/202 .
2 ex

Here C] and C2 depend on c,s,o,ao, and an arbitrary p, but
not on . The factor N is defined at (3.14).
Qur final task is to free ourselves of the logarithmic term in

(3.18) by partitioning C even more finely.

Theorem 3.5 Assume the assumptions of Theorem 3.4, but replace (3.16)

by: There exists a 4.(8) such that for all 0 <4, - 6, < A
0 2 1 0
|
R R Ly e R N L Ry o S Nl ¢ T e T T S S TR RN Lt A i A A A R L O/ R
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£ ool

such that for sufficiently

A-]-Zse-x2/202

By G
(3.19) n(s],dz,e) :_C(GZ-G]) N (8) + n,
where
- . + =
Then there exist constants €, and C,
large A
(3.21) P(sup |Lx| > A) < c;N.%(6.)
- "1°C *"A
xeC
<1 =32/242
+ czne A ]e A /2 .

A

We shall now see how to apply these results to specific examples.
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iy 4. EXAMPLES
o
&Y
'g Our examples are of two kinds. In some we simply re-derive
e
PN
éﬂ' known results. Our aim here is to show that the rather general theorems
ﬁfg of the previous sections give, when applied to specific cases, the best
Y/
- possible results. The more interesting examples which (by "induction")
n!!l.
ﬁg: we also feel give the best possible bounds, are new. In particular,
WY
3?# Examples 4.3 and 4.4, which consider the suprema of rectangle and half-
$0.Th

plane indexed Brownian sheets, represent the first time sharp (asymptotic)
a5
f?v bounds have been obtained for set indexed processes.
ol
;$§ A11 our examples deal not with the isonormal process on Hilbert
AN
i;‘ space H but with processes whose parameter space is generally some-
(M7
%ﬁj what simpler. Thus we shall have to translate these processes to the
g
3" isonormal case. But this is easy, for if Xt is a Gaussian process
e
- on, say, a metric space (S,d) with continuous covariance function
Ve
%f R(s,t), then we simply identify H with the L2 space of X, and
}b CcH with the set {xeH: x = Xt form some teS}. For x=Xt, y=xs
'3 in C we have (x,y)H = R(t,s). Clearly L 1is now the identity operator,
;9
b0 so that Lx is simply x identified as a Gaussian variable rather than
‘.
R an element of H. Furthermore sup|Lx| = sup|X t[.
s xeC te$S
ﬁQ' Entropy calculations are only slightly more involved, for we shall
)
}ﬁg ) generally partition C by first partitioning S (this is usually geo-
.'0..
) metrically simpler) and then letting the above identification induce
ﬁ:f a corresponding partition on C. We shall work the first example carefully
Mg
5?’ to explain what is happening. In the later examples, we shall skimp on
#' 0l
L detail.
e
B
l:':
v,b‘
ey

? T *\ ;ww -}«,ﬁg*¢a¢ {\\\¢$¢(xz‘: T
I

l$. faged :‘g it Ul OGO O OO e IILI. N



n 24

N Example 4.1. Let X be a stationary, separable process on [0,1]
he
‘3 with zero mean and covariance function R(t), which, for some positive

a], 8 and Yy satisfies

\ (4.1) 1>R(t) >1-a;t®  for all tc[0,v,]

Let o(t) be a positive, continuous, monotonically increasing

function on [0,1] such that for some Y, > 0, 0 < 3, < a, and

’
y
o some a >0
o
"
3 (4.2) a2|t-sl§§ |o(t) - o(s)] §_a3|t-s]° whenever |t-s| <y, .
A8
) Define now a scaled version of X by
4
% Y(t) = o(t)X(t),  te[0,1].
'_E
We think of Y as a locally stationary process, (c.f. Berman (1974))
. and shall show that
!
i -1 —22/242
I ) 1e>\/20 (1)’ 8> o> 0,
" (4.3) P{supSY(t)I > A} <
" 0,1
. .1- 32 /242
ﬁi ¢, 1 2/a+2/6e 22/252(1) 0<8 < a,
.
l, . -
: for some finite < and €y and all x > 0.
i: Before we prove (4.3), which we shall do via Theorem 3.5, it is
29 instructive to consider how close we could get to (4.3) via existing
k’ theory. If we apply Berman's (1985a) recent bound, then the best we
< can do is a bound of the form
&4
%
o - 22/2.:2
% o l+1/ae 22/252(1) 6 > 20 >0,
& (4.4) P{supSY(t)| > A} <
L ]
] s - “32/9 .2
5 ¢ 1+2/3e 22/252(1) 0<g < 2.
3§
:é’;

) Pa ) :
] "“ n
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i

i§ This is clearly poorer than (4.3). [A proof of (4.4) follows easily

;; from (4.5) below and Example 4.1 of Berman (1985a).] The above result

§ could also be obtained, within the framework of this paper, via Theorem 3.3,
i ‘ which is effectively the analogue of Berman's result for the isonormal

%! process.

? One could also try to apply Weber's (1980) Théordme 2.1 here. In fact,
.g? his result is not strictly applicable, unless strict equality hold in

. (4.1) and (4.2). Assuming this, one obtains a result like (4.4), but with
:g an extra factor of log A in the bounds. Thus Weber's result is weaker

% yet than Berman's.

a_ Finally, before commencing the proof, we note that bounds similar

§ to (4.3) have been obtained fqr processes displaying covariance behaviour

:}3 similar to that displayed by our Y(t) by Piterbarg and Prisjaznjuk (1979).
; They actually do better than (4.3) for their case, for using arguments in

;g the style of Pickands (1969a,b) they both identify the constants in

% their bound and show that the bound is sharp.

; Throughout the proof we shall consider Y(t) to be both a random

é variable and a point in H. From (4.1) and (4.2) we have that for all

iéi st with [tes| < vq a v,

o,

:: (4.5) 1Y(t) = Y(s)IZ = E(Jo(t)X(t) - o(s)X6)[?)

::,E:: | iaglt-s|2°‘ + 202(1)a, It-s|® .

.

:. We now divide the argument to two distinct cases, and consider firstly

ﬁ 8 > 2a. Then, via (4.5),

E; (4.6) | Y(t) - Y(s)| < (a + 202(1)a |t s|% = a4|t-s|a

F

B

-..‘- 1
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To partition C, for each ¢ > 0, we simply partition the unit interval
i in sub-intervals each of length (2e/a4)]/“, and then map these intervals
" into C by the correspondence t - Y(t). Clearly then Nc(e) 5_(25/a4)']/“

t for small enough e, so that we have polynomial entropy with «=1/a.

(Actually, it is not quite true that Nc(e) 5_(25/a4)']/“, for a true

?‘ upper bound is 1 + [(2e/a4)']/“], where, here, [x] is the integer part
of x. Nevertheless, to make 1ife a little easier, let us agree here

that henceforth every time we bound an entropy by some non-integer, we

\ allow ourselves the freedom of adding a minor "integer-correction factor",

. if necessary. This involves no real loss of precision.)

by To obtain (4.3), we shall apply Theorem 3.5. For this we need a

;. handle on the function n(al,azﬁ) of (3.19), and to determine the 8,

0 for this problem. To do this, fix ¢, and let Ge be the partition just
§' described, but based on intervals of length (e/a4)]/a. Subdividing

if each AeGe according to the same principle, we easily obtain

NrG(e) = (e/a4)']/“ and NA(ee) g_e']/“ for small enough ¢ and 6.

-

' Fix p > 2, and compare this with (3.12). We see we can take f(8) = o

-

there, so that the g(e) of (3.13) is given by g(s) = e(1+2p'2), and

the o, of (3.14) by

PP

(4.7) o, = 27 (12p B (144np /)5 T

Now take o(0) < &, < 6, < o(1) and consider the set C *ac.”

.3 It is easy to see (we leave the algebra to the reader) that for

3, 8, = 81 < agyy this set is the image of an interval in [0,1] of length

¢ '] - ]/a "] - ]/(1

2 between a, (8, 6]) and a, (62 51) .

K To finally bound n(8++6,.8): = #{AcG : AaC."nC.~ # P} for

) 1°72 8 51 &

4

w

';‘ - N »ae -1 > - R LN Y LR e Y AR "‘- “\"".“".
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|62-6]| < Ao(e), set Ao(e) = 2, Then since each AeGe is the image

1/

of an interval of length 0(e '"~) and C6+n C; the image of an interval

of length at most 0(62/°), we have that l(al,gz,e) is at most two. Thus
(3.19) is satisfied for all positive B with ng = 2, and all the
conditions of Theorem 3.5 are satisfied. Consequently (3.21) holds for
every B8 > 20. Take g arbitrarily large in (3.21) to obtain (4.3) and
prove our result for the case B8 > 2a.

Now take B8 < 2a. Then by (4.6) we have for small |t-s| tnat
1¥(t) - ¥(s)]I < a, |t=s|®/2 .

nomial entropy with « = 2/8. Defining Ge as the image of intervals

The argument above thus gives coly-

of length (e/a4)2/3, we once again find f(6) = 6 but now

0, = A'][(1+2p'2)(1+ gﬂnp)%]']

The set CZ n C; remains as it was above. Again take Ao(e) = g2
1 2
and consider n(52,6],e). If 8e (a,2a) then, once again, as 8 \ 0

we find n(6],52,e) <2 for 8y = 6

case the argument is precisely as above, and we now have (4.3) for

1< Ao(e). Consequently, in this

all B8 > a.

If 0 <8 <a the intervals mapping into Ge can be shorter

than those mapping onto the Cg n C; » (lengths 0(62/6)
1 2

(52 - 6])]/° 5_0(61/0)). Consequently, noting that NCG(e) = (e/a4)

versus
-2/8
9

we obtain

1/ay G
n(8758,,8) <2 +C(6, - &) "N (6)

for some finite c. That is, we have the right bound for (3.19) of

Theorem 3.5. Substitution into (3.21) completes the proof.

3 SN ‘v.\ "H"&’V# “3e \._,. TN ) SN '\.'v VGG u’\‘,@. ..z OGN “J-*‘.‘-"}"' ,;*-,.}:.ﬂ w'u',r,)
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0
X e
§ Our remaining examples are all connected with Brownian sheets.
‘ Let 1, be Lebesque measure on [0,1] . The zero mean Gaussian process
5 W defined on Borel sets in [0,1]k with covariance
N
b
i
(4.8)  E[W(A)W(B)] = A{An B),
b
K is called the set indexed Brownian sheet. The pinned version of W,
1

denoted by
M(R) = W(A) - A (A)W([0,11%)
BN §
X
W
S has covariance
5
L [+] [o]
Y (4.9) E(W(R)W(B)) = o (AnB) - & (R)x (B).
)
\;‘
;{ For the special case of W indexed only by k-intervals of the form

k °

] Ay = 1 [0,t, ], wewrite W(t): = w(A ) and W(t) = W(A ), and
5 < i=]
g call W(t) and w(t) the point 1ndexed sheet and pinned sheet, res-
* pectively.
i w(g) is of particular interest as the natural k-dimensional
N °
ﬁ generalisation of Brownian motion while W(A) arises as a weak limit
&
N in an empirical measure setting. (c.f. Dudley (1978).) We start with
;, the point indexed pinned sheet.
[}
R .
b Example 4.2 Let W be a point indexed Brownian sheet on [0,1]k. Then
: there exists a finite C such that
th ° 1) 012
L (4.10) P{sup lW(g)l > A} g_cxz(k ')e 2A .
" [0,1]

s . W o O . St SRR S Loy x' S Rt AR S Iy .-‘ ‘-'\.\""”' S L R
‘ P ’r“: J‘$ » " '. "‘" *'i'~ n.",‘ Al o d "o f‘\ :: N J 3‘ .\-.:: ‘.\-. . W Ay ‘P J‘ < » 'v-}: -*.- } v L
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'.‘;:‘
4
1:" This result was originally established in somewhat greater
i
' generality in Adler and Brown (1985), where it was also shown that this
;'.; bound serves, for different €, as a lower bound as well. It is not,
fv; : however, obtainable from any other general Gaussian bound. Using
" Berman's (1984a) result, or our Theorem 3.3, the best bound possible is
¢ 21 =232
i only O(A2k ]e 22 ) .
h3)
kN
-2,.:: We rederive the result here to show how it can be obtained from the
i
z general theory. Once again, we shall apply Theorem 3.5, so we are
: basically concerned with finding a good bound for n(5],52,e), and
% the other factors in (3.19).
{ We commence by noting
o
] o o o o
f (4.11)  [[W(t) - W(s)|P = E[(W(t) - W(s))2]
i
k
N f.A(AtAA§) < & ‘t =S, |
a2 " i=1
P}
.:" ) )
!:: for all 5,te[0,11°. Now, for each 6 > 0 set m, := [ke™]
([x]: = integer part of x) and define the partition Ie of [0,1]k by
.
g k koong o gl
: Ig = {Ac[0,1]": A = 1--:_-I] (He— , . ] n; =0,1, ,me-l} .
) Furthermore, let Ge be the partition Ie induces in H, the L2 space
by of W. By (4.11), if xsyeAeGg, then llx-y]] < 8, so that G, fis
- a partition of the type required for Theorem 3.5, and
b
A -
" (a12) N S(e) = [k/e1¢ < 3 oK
k)
&
4
“
"l
J..

IRt S

0 * (o) J l' \, N ‘r'(“.rﬂ' ‘\ - (\ B ~ - - \n _- e - ':‘.‘ .‘n\'.\ff{."-\‘-\'.%}.‘u DR t‘ g B¢ )\
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the inequality following by simple algebra. By (4.12), C has polynomial
entropy with « < 2k. We now check the scaling property.

Fix ¢ >0, set p: = [e'z], divide each Ael  into pek equal
k-intervals, and map these into the corresponding AeG6 . Applying

(4.11) once again, it is easy to check that

Np(oe) < 32K forall e < (2k)7% and AcG,
Thus we can take f(8) = 6 in (3.12) and, for some p > 2,
(4.13) 6, = a7 [(1+2p72) (14Bkenp)®] "
A1l that remains is to investigate n(sl,az,e). Firstly note that it
suffices to consider 5] > %, for we can break up C 1into two parts,

over which ||x|| <% and ||x|| > %. Over the first part the inequality

-832
(1.1) gives us an upper bound of O(e 81 ) for the tail of the supremum,

which 1is clearly of smaller order than the desired (4.10). Thus the

case 8. < % can be neglected. Now note that C; n C; is the image

1 2

of the following set, in which we write |[t! for tyxoxt

(4.14)  1(8),8,) = (t: 6]2 < [t1O-{t]) <

R L L

2)%

u{t: 4+ (% - 52

<t <o (- 697

The second line follows via a little elementary algebra. To count the
number of A from Ie that intersect I(G], 62) it suffices to count

the number of lattice points of the form (n]/me,....nk/m%) falling

DM

3 ; ._ AR SR H‘N\\‘\,-"\'- 3 z";
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B in 1(61,62). But this is relatively easy, for if we fix Nyseensly |

then some more algebra applied to (4.14) shows that no more than 32/?(52-51)%me

i values of n, are permissible. Allowing Nyseees to vary, we thus

K

f obtain

k-1

‘ n(s],éz,e) < c(my) (62-6]);’%6

[1

‘ -2k h

! < c(k)e (52-51)

K

K G
_<_C(52-5])“Nc (e) .

A

But this is all we need, for substitution into (3.21), on noting that

o

= 4 for this problem, immediately establishes the required (4.10).

R o

Example 4.3 Llet Rk be the set of all k-intervals of the form

k
[s,t] = T [s ,t ] contained in [O,]]k. Then there exists a constant
i=]
C such that

° - <7232
(8.15)  Psup|W(A)[>2} < o2 (Zk=1),-22%
R

ol el 2l bl PatX

k
a Before we prove this result, we shall establish its sharpness by
f showing that there exists a ¢' such that
- =222 °
2 (4.16) C'AZ(Zk ])e 2) < P{sup W(x) > A}
) Rk
]
’ We shall prove this for k=2. For k>2 the proof is basically the
.; same, the notation is just a little longer. Let A = [s,t] be a
f rectangle ir {0,1] , and define a mapping T:R2 - [0,1]4 by
t,-s t,.-s
- RS | 2 2
: T([§9§]) (_t ’ t]’ t ] tz)-
L} ] 2
]
K
4

L

g ¥, 1' il f Wy W Wy W oy S
.‘ ‘! "r'\ -\-\.N', x * (.'h ::&:"": :.:(‘_, ',-.,-._-:.‘-
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Clearly we must have 0 <5y sty <1,1=1,2 for [s,t] to be in R,
and so it is easy to see that T is one-one and onto. The inverse

mapping is defined by
=1 _
(4-]7) T (Z] 322$Z33Z4) = [(22(1-21)924(]'23))3 (22324)]'

Now define a process X(z) on [0,1]4 by X(z) = w(T'](g)).
This process is clearly Gaussian with zero mean, and it follows from

(4.17) and (4.8) that

(4.18) ()] = 217N @) = 2] - (z/?

This is the variance of the point indexed sheet on [0,1]4. After a
page or so of elementary algebra, one can also derive the rather useful
inequality that for any A,Be:R2 .
4

MARB) < 1 [T,(A) AT, (8)]
i=1

where Ti(A) is the i-th coordinate of T(A). An immediate consequence

of this is that

ELX()X(W)] = ELNCTTW(TTI T < T ugay,

That is, the covariance function of X is dominated by that of the point
indexed sheet on [0,1]4. Consequently, by (4.18) and Slepian's inequality
(Slepian (1962)), the tail of supX dominates that of the sheet. Theorem

2.2 of Adler and Brown (1985) states that this, in turn dominates

6 -2)2 2(2k-1 )e-zx2

C'rxe for some C', (or C'x for general k), so that

(4.16) is proven.
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Now to the upper bound. We shall give the main steps of the
derivation and skip all the algebra, most of which is similar to that
in the previous example. To define Ge » set mg = [2k/62], and Tet

9 ~
where Lk(e) is the set of all integer 2k-tuples of the form

G, be the image in H of the partition of Rk given by UJeL (e)A(J)
=k

G, 5,5 T 5 By i g Bk,
5. = 0,1,..m-1, 421, 0k, 251,2 and A(J) s the collection of
all k-intervals [x,y] satisfying lxi'ji(])/me‘ < 82/2k,

{yi-ji(z)/mei < 92/2k, i=1,....k. It is easy to see that Ge is a
partition of the required form, and that

NPG(e) 5_3.4'(k2ke'4k = e

Consequently we have polynomial entropy with parameter « = 4k. Con-

tinuing the same procedure, it is easy to see that, for each AcGe s

NA(ee) j_Ce_4k , SO that as in the previous case we have f(s) = ¢ and
I
6}‘- cA .,
Now consider q; n C; , which we can write as
] 2
K 2 X k 2 2
{B—ir_l][xi,yil- & _<_I]I(.V1-‘X1-) - [r]x (y;=%)17 < 8,5

Again we can assume 6] > Y%, and follow the procedure of the previous

example to eventually obtain

G ks
n(8;:6,58) < cN."(6)(8,-8,) for 6,-8; < Ce2.

Substituting all the above into Theorem 3.5, together with the fact that

o=%, we prove (4.15)
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Qbk
X % The previous two examples almost seem to indicate that in working with
!.t‘v‘!
Brownian sheets it is only the dimensionality, d, of the parameter space
o o
9;' that determines the power of A in our bound. For example, for W on
i 1) 2232 o .
954 [0,17%, we have d=k and the bound is cr2(9"1)g"2% o W on
L
R > we have d=2k (each Ach can be specified by 2k parameters)
D, - -232
’éw and the bound is again sz(d ])e 22 We find this once again in
'\: <]
9?9 treating W 1indexed by all half-squares in RZ , (which we shall write
AN
as 02: ={A< [0,1]%2: A = [0,1]2 n {(x,y): ox + 8y + v < 0 some a,8,yel-=,=]}},
4t
3 for which d=2 .
 $
2 Example 4.4 For the Brownian sheet indexed by half-squares, we have
22
. o =232
1& (4.19) P{sup|W(A)| > A} < caZe 2 .
1t 0, :
- for some finite, positive C.
;t{ To commence the proof of (4.19) note firstly that if Ae:02 .
bl o 1)
;i. then W(A) = -W(AC). Consequently we need only consider half of 02 R
3t
1) say those half squares that contain at least one of the points (1,0)
:tf or (1,1). We write this as 02+
5;§ Let S],...,S4 denote the four sides of the unit square,
¢
e."!

. {{xsy): 0 < x,y < 1} on which, respectively, x=0, x=1, y=0, y=1. To

r——
=

e

(3

define Ge’ set my = [e'z] and xi(k)(e) the point on S, ata

distance i/me from its start. Now let A(e,k,2,i,j) be the collection :

T
KA

|

of all half pianes in Dz+ with boundary intersecting Sk between xi(k)

N (k) (2) (2) - s sl
‘iz and X547 and 51 between xj and xj+] o (ky2=1,. .0 ,8,kFs, 1,7
NN 0,1,...,ﬁg). These A clearly provide a partition of D; » and we
.~ o
e take the induced partition in the L2 space of W as Ge . Clearly Ge
‘jﬁ has the properties we generally require and, furthermore
¥
&
A
ﬁq
[} [V R R
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G 4

(4.20)  N.(8) = (, ‘.

)(me+1)2 < 248

Consequently we have polynomial entropy with «=4. To further subdivide
k

these sets, simply subdivide each interval [Xi( ),xgﬁ%] more finely,

so that simple calculations yield that NA(ee) 5_45_4 for each such A.

Consequently f(8) = e and for p > 2

8, = A_][(1+2p-2)(1+82np);5]-]

It remains to estimate n(é],az,e) , for which we must describe
Cg N Cg . As before, this is made up of the image of all half squares

1 2
whose intersections with [0,]]2 have area S satisfying either

(4.21)  ap =kt (x- 6,25 cut (k-6 b
or

(4.22) 2y =t-(k-60T<s <u- (k-5

We further divide C; s} C; » into the image of half squares whose
intersection with [0,1]2 ]is azproper quadrilateral, and those that yield
a triangle. We shall count only the first case, the second can be treated
similarly, and yields same order of magnitude bounds on n(d],éz,e). Clearly,
because of symmetry, we need only treat quadrilaterals including all of

the side S2 , for we then simply add a factor of two to our counting to

account for the side 53 .

Such quadrilaterals can be parametrized by two points u and v

representing, respectively the points of intersection of the boundary of

the half plane with the sides S, and S, of [0,1]%. Then the area

3 4
of the quadrilateral is given by 1-%(u+v). For such a quadrilateral to
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be in the pre-image of C; n C; it thus follows from (4.21) and
1 2
(4.22) that

2(]'bi) cu+v<2(l-a,)  for i=1or 2.

Similarly, if the coordinates x$3)(e) and x1;4)(e) on S3 and S
1

define a half square whose image lies in C; nC.

, then
1 )

2

(4.23) 2(1—b,i)m6 5_11+12 5_2(1—a1.)me for i=1 or 2.

For fixed ai’bi the number of pairs (1],12) satisfying (4.23) is

no more than ng(bi'ai) . Now note that via a little algebra

16(b.-a;) = (1-88,%)% - (1-45,9)% < ¢ (5,-5,)*

2
Using this and all the above we find that for small enough 8,875
- 2
n(G] ,52,9) _<_C(<32 51)%'"9

= c(az-a])%NG(e) .

Now apply Theorem 3.5 and the fact that o = % to obtain (4.19) and so

complete the proof.

4
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5. PROOFS FOR SECTION 3

We need firstly to establish (3.2), i.e. for p > 2
and all > (1+4.<:an)li

2|<

2
(5.1)  Pisup|Lx| > A(o*2p"2)} < T
¢

Our starting point is the basic inequality (2.9). There, put m=1, so

that 60=0, & = o, and there is only one X sequence and one ¢ sequence.

24 ;
Set €5 =p 2 and Aj = AZJ/Z. Then (2.9) becomes

® . _ J J+] .
(5.2) P{sgp|Lx| > Ao + .Z]ZJ/Zp 2 )} <a ZOpK2 w(AZJ/z) .
J: J_

The sums are easy to calculate. Following Fernique (1975), for j > 0

AL

p YA

23/2) 2/t § exp[K2j+]2np + %jn2 - uzzj']]du
A

| A

V277 f exp[-%u2 + 2¢canp + %(jan2 + 1-29)1du,
A
if A > (1+4cenp) . Consequently the rightmost sum in (5.2) is bounded
200 1 29 2axp 5(1-29).
J=0
Evaluating the sum gives the upper bound in (5.1) with a little room to
spare for the constant. The leftmost sum in (5.2) is easily bounded by

2p72 | and so (5.1) is established.

We can now start proving the theorems of section 3.

by

Proof of Theorem 3.1 We commence with (5.1). Note firstly from the proof

-li

of (5.1) we require p'2 < gg i.e. p > €0 We have also required

} \\.‘vx "N\L'Cx\\

r\
R R A A A S A S S S S '-
<

s
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s'iah
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,:.;.' Then by (5.1) and the fact p > 2 we have that for 2 > (c+%)2(1+4u<2np)!5

250

3

ok g & _ 2

s (5.3)  Plsup|Lx| > 2} < 2 5 ap?<f e/ 2y,

;é},: C A/ (o+2p-2)

i

‘A

) < 3 apr -2 2 =2\,

A <5 ap A (c+2p Jexp{-12/2(c+2p “)2} ,

s

tada

i‘s;:;:.: the last line via the standard inequality. Now set p=x in (5.3),

taqﬂ‘q -

:::'3:_:: which can be done if we take A > max(2,e:0 ;’) and A > (o+%)2(1+4cenn).

o Simple algebra converts these to the conditions on A given in the state-

Wil

:{5&: ment of the theorem. Then on substitution, we obtain

W

o

iy 5 ..2¢~1 -2

¥ (5.4) P{sup{Lx] > A} <7 an (oHs)exp{-12/2(o*+2x 7)2} .

.!“l' C

LM

e

Q

s::c:

:'.'s Under the conditions we have on A , it is easy to check that the exponent

Y

- here is bounded above by 12/202 - 2(c:+2\'2)/o4 . This completes the ‘
[}

i};} proof.

.'3_‘\_7

') Proof of Theorem 3.2 We shall not keep track of the constants of the

HN .

:::::i‘ Theorem throughout. Doing so more than doubles the length of, and compli-

t."'.t

,‘::::k: cates, an otherwise simple argument. The interested reader can check the

WS

= constants by adding to the following argument some simple algebra.

.v';l"‘

’::‘:':E Fix 8¢ (0,0), choose X large, and note that we can always choose

N

" so that §) < 1. en define

o f hat f(s) < 1. Then defi 1
H‘L

P 2,1 -y " |
o pp = A T45(0-6)177 , P, = Af%(s)

g N

R Both Py and p, are less than A . Apply (5.3) to the two sets

it

\ :, Cy *= C+0 n C'8 and C, := c+6nc'c » using p, and p,, respectively,

A

e3¢

s

"
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[ in place of the p there. We find

(5.5) P(sup[Lx]| > 1) < c[A™ +;5(c §)]7¢ 31 AZ/Zof
C

; 1

bounding the exponent in (5.3) as in (5.4). Furthermore

y ' (5.6) P(SgpILx| > 1) g_c[xf%(x)]ZKA']e'Az/zcz .
2

Combining (5.5) and (5.6) proves the theorem.

% Proof of Theorem 3.3 The idea of the proof is simple. If & is small,
é then so are the sets in Ge . For Ae:Ge s choose some x*e¢A. For each
33 xeA, write L = Lx* + L(x-x*). Since ||x-x*|| must be small, L(x-x*)

g should be also small (stochastically). To show this we consider L{x-x*)
» conditional on Lx*, using an idea used previously in Adler and Brown

‘2 (1985) and Berman (1984a) for certain Gaussian processes on Rk. Con-

41 sequently, Lx = Lx* + a smaller order term. Precise estimates are

" given in the theorem. The details of the proof are as follows.

4 Take AecG. and let x* be a point in A satisfying [x*|| = sxpllxll,
5 i.e. x* has maximal norm in A, (Such an x* exists, for we lose no

" generality in assuming A closed, and our assumption of finite entropy

E then guarantees compactness and so the existence of x*.) Consider the

2 - process

B

L*x: = L(x-x*) = Lx - Lx* ,

and let A* be its image in L2(q,P). Let I be the (identity) operator

. o e
e e -}

on A* that simply identifies each element of A* as a Gaussian variable.

The inner product (u,v) of u=L*x and v=L*y in A* 1is given by

i‘. \ "'!\.S_ St \y\‘-: \-J,'s“\ \}-.’\-
£,

# !
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E(L*x.L*y), 1 is isonormal on A* and sup,,lly = supdL*X. Furthermore,
it is trivial to check that

Sup llull » < 6%, and  [ju-v][, = [x-y|l

Thus the entropy function for I is identical to that for L on the
original space. Now recall the proof of (5.1). Rework it for I on
A*, noting condition (3.12), with p replaced by pf'%(e). This gives

- -yl
(5.8)  Pisup|L*x| > A[o+2f(e)p 21} < ap™f e™"/% au .
A A

Furthermore, precisely the same bound holds if we replace L*x by
L**(x) := Lx - E(Lx|Lx*). This follows as for L*, on noting that
fu-vl|ls < |lu-v], » which follows from an easy calculation on conditional
variances.

Now note that the event that interests us, sxp\Lx] > %, 1S included

in the union of the four events:

(5.9)  [Lx*| > A - g(6)(1+4xanp)%,

(5.70) supjL*x| > 1,
A

(5.11) suplx > A and 0 < Lx* < A - g(e)(1+4|<5an);i R
A

(5.12)  inf Lx < -1 and -x + g(8)(1+4np)% < Lx* < 0.

3 A

')

e

B\

0y The probability of (5.9) is bounded by the first term in (3.13),

while the second term there bounds the probability of (5.10) by (5.8).
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The probabilities of (5.11) and (5.12), which are clearly identical, are

a little more involved to derive.

Note first that by well known properties of Gaussian variables

*
E(Lx|Lx* = n) = {fi%;%y'n < n

if n >0, since x* is a point of maximal norm. Consequently
E(Lx[Lx*) < Lx* on the set where Lx* > 0, and so (5.11) is contained

in the event

supL**x > A - Lx* and 0 < Lx* < A - g(6)(]+4K£np)%.
A

But L**x and Lx* are independent, so the probability of this event

can be bounded by

Y -
. P(sup L**x > x-u)p(u/o )o ]du
0 A ATA

with y = >‘-g(e)(1+4-<Jan)!2 . Applying (5.8) for L**, we can bound this
by

A
2k A-U -1
2ap“{ y( )p{u/a,)o,” du .
0 a(e) A’CA

Setting z = A(A-u), this can be further bounded by

2apz”éw (33057 )p(A'sgx)(AoA)']dz :

Noting that p(x+y) 5_p(x)e'xy for all x,y, we can further bound
the above by

O
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—E— p(—)f b(=Z)et/h g

,\glef

This is now a standard integral, and turns out to be no more than half

the last factor in (3.13). This completes the proof of Theorem 3.3.

Proof of Theorem 3.4. Consider Corollary 3.2 for A's belonging to

Ge n C; and G n C » where §e(0,0). Noting the dependence of C]

in Corollary 3.2 on o by writing c](o), we find

-1 -l /202

P(sup|Lx| > ) < n(s,8 ){c (o)r” 2A'Zexp[-%x‘*(1+4.<znp)]}
C

+ [N%(0,)-n(6,8,)1- 4 (627" 28% ¢ 3 Zaxp[ -2t (144c2np) 13

Along with the other restrictions on A, now take A > [52(1+4K2np)]'%.

Then applying (3.16) to the above we obtain, changing constants at will,
-2 -32/252
(5.13) P(Suple| > 1) <cN%(e NALCE §) a1 A2/ 20% r/262,

] =32 2
ten lemAe/20%

A

-2 2803

Choose & = g-A ~&nX » taking A large enough so that &e (%0,0),

and note that for this §

22/9+2 - 22/242
(0-5)Be™X/20% 3 2B(yny)Be™ /207
and
22 2 2.52
e A /26 - exp{ - L (-I + g<-8 )}
202 §2

e .pr. W OUCLTUE SRy \‘ "'s. xf\‘*\ \j’_\*\*\ B
\ 3 S)* ““
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h, 2 - 3
35 = exp{ - 2= [1+(Y, 24n 280 I
202 82

N <ew{-ii- 280

< =5 il
o 202

IR R - 12 2
n’Q’! i A 289 A /20

¥ Substituting these last two inequalities into (5.13) establishes (3.17)
N and, thus, the theorem.

Proof of Theorem 2.5 We work from Corollary 3.3. For fixed ) define

:f the sequence {61} given by
f

:if : 50 = Yy, aiZ = g2- (m-i)x'2 s 1=1,...,m,

where m := [%2)2] ., Clearly it will suffice for us to bound

P(supiLx| > A). Apply Coroliary 3.3 to obtain
+
y s,

P{Suplel >} < ¢ z n(8; 18, 8)27 exp( $)2/5.2).

¢t i=

Note that 8585 4 < 1/(0x2) . Take 1 1large enough for (3.19) to
e hold, and substitute to bound the above sum by

-8 -1-22. G - m

(5:13) <[ + ng X110 I exp(-2/s.2)
‘:' . ) A i=] 1
I:.
3
3; Thus to complete the proof we need only bound the last summation by
R 432 /g2 .
W) e . This can be done as follows. Set

p‘v‘
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s;ié"
s
Sy
wh iy =2
K a; = exp{-}2/(o?-(m-1)2"")}
,1.,
::Q'. It is easy to check that
i -
e S V-
a1 < a_ie i
A'¢ -
}‘S Thus the sum in (5.14) is bounded by
u'.
e m
o -1/20%\k *m = a-kA2/g2
‘ otmf(t-z/c)1——_]'/?_—01‘—-03;i o,
e k=1 1-e
s
‘:‘,:} which completes the proof.
G
o
{’} Remark: The astute reader may have noticed that at no point in any of our
L.
§-;: proofs have we used the full power of the Basic Inequality (2.9), in that
o we have not taken advantage of the € and ) double sequences to partition C ‘
A according to variance (i.e. into the sets of Ge)' The reason is that,
~: while doing so we can improve on the standard upper bounds, we cannot
e
b s reach the sharpness of, say, Theorem 3.5 without an intermediate result 1ike
oy
) Theorem 3.3. In fact, it is the careful conditioning argument that goes in-
B
;3“ to the proof of Theorem 3.3 that, ultimately, makes everything work. |
ey
'.
b
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6. SOME COMMENTS

1. Lower bounds. Throughout this paper we have, with the exception of

Example 4.3 treating rectangle indexed sheets, dealt only with upper bounds
for the excursion probability. The fact that in every example for which
lower bounds are available we find that our upper bounds are sharp in the
power of A leads one to believe that they may be sharp in general.

This, however, does not seem to be easy to prove. Some lower bounds are
available from Weber (1980) and these, 1ike his upper bounds, are sharp for pro-
cesses with constant variance. For the highly nonstationary examples of Section
4 they do not provide bounds that match our upper bounds. As for upper bounds, how-
ever, it is easy to see by example that lower bounds that depend only on entropy

without taking into consideration varying variance can never be sharp for all cases.

2. Vapnik-Cervonenkis classes. The natural geometric structure of VC classes

of sets or functions should be enough to generate some of the homogeneity
of C required by our theorems. Furthermore, the fact that each VC class
has a natural, single parameter describing its structure (and, in a

certain sense, its "dimensionality") seems to indicate that it should be
possible to apply our results to VC classes in such a way that this para-
meter enters in a simple fashion into the power of . We have found indi-
cations that this should be true, but have been unable, so far, to put

together a serious proof.

3. Exponential entropy. The exponent of entropy of C 1is defined by

T = T(C) = 1im sup log log N(C,e)/1og(1/¢).
e+0

For L to be continuous on C we must have r <2. If r <2, L is

continuous. For r=2 there are examples of both continuous and discontinuous

B G T S R L R e A N RN
: y AR : )¢ SRR ."""'Pﬁ'r'{\d- DL AL SRR \;:\'*_-.
~ y S s s S




R A

S DO S

() o X +Y K}
“‘"‘ .h '4'1:‘1 :..: ‘.' :‘ < !ﬁ. \\h S ! , . ' ':ie |’A' } S \

46

(and hence unbounded) processes. By assuming, as we have since Section 3,
polynomial entropy, we assume r=0, thus leaving out many interesting
examples. In particular, we cannot handle many set indexed sheet pro-
blems. (See Dudley (1973, 78) for examples.) Furthermore, bounds of the

-%AZ

form 2% are not valid in this case. Nevertheless, a result of .

Borel (1975, p. 214, middle of proof) states that for all a.s. bounded
Gaussian processes there is a bound of the form exp(-b§x2-+const.x). In

L

fact, Borell's result can be improved on, and, under miid conditions it
is possible to show that there is a function a: [0,2]+[0,1] for which
bounds of the form exp(—B&A2-+const.X“(r)) hold. We shall report this

separately.

\
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